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Preface

The objective of the project is to develop techniques for identifying

phenological changes and plant types on a broad scale. Phenological sequences

under study are the Green Wave and the Brown Wave (p. 4). Temporal comparisons
have been made for 10 of the 14 test sites in the Appalachian and Mississippi

Corridors (2.1.1). In addition to temporal studies for each individual test

site, a new technique has been developed that permits the use of data where

only one good overpass occurred.

Three subsites have been identified within each of the 10 test sites in

the Rocky Mountain and Columbia Valley Corridors (p. 27). These are (1) range-

land, (2) alfalfa fields, and (3) wheat fields. The band ratio parameter (BRP)

and the transformed vegetation parameter (TVP) are also calculated for these

sites.

The problem of changing atmospheric and illumination conditions was studied

by both LARS, Purdue University, and RSC, Texas A&M University (2.1.2). Tests

so far indicate that corrections to ERTS data for the Eastern Corridors may be

necessary for sun angle change and for variations of water vapor and particulate

matter in the atmosphere. In the clearer atmosphere over the Western Corridors,

correction for sun angle change is the only correction necessary.

The BRP (p. 27) appears to provide a responsive indicator of greenness.

Data available from the Rocky Mountain and Columbia Valley Corridors show this

is especially true of the measurements of alfalfa fields.

Ground photography documenting phenological events was continued at the 24

established sites in the four corridors for the 1973 Green Wave.

Observations, from more than 3200 sites, on two lilac phenophases in the

spring of 1973 documented the 1973 Green Wave.

Phenological changes have been correlated with density differences within

each band and with the BRP. This ratio continuously decreased with the progres-

sion of fall phenological changes in field crops and forests.

Regression analysis was performed on the spectral response as a function of

latitude for different days during the 1972 Brown Wave.

Results to date from the Phenology Satellite Experiment shows the feasibility

of the development and refinement of phenoclimatic models.

Satellite data, from an operational ERTS system, will make worldwide pheno-

logical monitoring possible. This is necessary to develop universally applicable

phenoclimatic models.

For countries with highly developed agriculture, such information would be

useful in characterization of crop status and an aid to yield prediction and

management planning. Phenological data in less-developed countries could be

useful for agricultural land-use planning and for determining site suitability.

PRECEDING PAGE BLANK NOT FILMED
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1.0 INTRODUCTION

This study is being conducted by the NE-69 and W-48 Regional Research

Technical Committees I as an extension of their ongoing research in the

development of methods for evaluation and utilization of remotely sensed

data pertinent to agricultural ecosystems by ERTS and aircraft. The

project involves research on the interpretation of remotely sensed data

relevant to the Green Wave and Brown Wave (the seasonal and geographic

procession of foliage development and senescence over wide areas) -and

their relationship to agricultural production.

The ERTS program is coordinated and directed by Dr. B. E. Dethier,

Professor of Meteorology, Division of Atmospheric Sciences, Department

of Agronomy, Cornell University, Ithaca, New York 14850. It uses the

established facilities of 16 State Agricultural Experiment Stations, their

substations and Phenological Network Stations and benefits from the experi-

ence gained through 16 years of closely coordinated regional and inter-

regional research projects.

About one-half of the cost of the research in Agricultural Research

programs has been funded by the cooperating states and about one-half by

federal (USDA) regional research money distributed through State Agricultural

Experiment Stations.

The diverse components of the ERTS-1 project necessitated close

cooperation and coordination. To achieve the meaningful merging of research

products, the following organization structure, as shown on page 2 was

successfully implemented.

1Regional Research projects such as NE-69, Atmospheric Influences on Ecosystems

and Satellite Sensing, and W-48, Climate and Phenological Patterns for

Agriculture in the Western Region, are funded jointly by participating State

Agricultural Experiment Stations and by federal regional research money from
Cooperative State Research Service, USDA.
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The Phenology Satellite Experiment is a temporal study of the variations

in spectral properties of plants for various test sites in the United States.

The broad aim of this project is to observe the temporal and geographical

progression of the plant life cycle through the use of ERTS data. The two

phenological sequences under study are:

1. The Green Wave - a record of the geographical

progression with time of foliage development

over wide areas in the spring.

2. The Brown Wave - a similar record of vegetation

senescence or maturation in the autumn.

A well-coordinated nationwide network of 24 ground observation sites

in four corridors (Figure 1) has been established and ground photography

documentation of phenological events has been continuous since the launch

of ERTS-1.
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Figure 1. A - Appalachian Corridor, B Mississippi Valley Corridor,
C - Rocky Mountain Corridor, D - Columbia Valley Corridor.
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2.0 ACCOMPLISHMENTS

2.1 Data Handling

2.1.1 Qualitative Analysis of Individual Test Site Data

Appalachian and Mississippi Corridors

A flow chart illustrating the sequence of tests and correction factors

used to infer the project results is illustrated below. Results so far

include the phases of data analysis for each site and atmospheric and radi-

ation corrections as applied to Lafayette, Indiana with a comparison of the

Lafayette analyses and conclusions drawn thus far.

Analysis of ERTS spectral

response data

DATA ANALYSIS ATMOSPHERIC AND RADIATION

1. Linear Regression for CORRECTIONS

Spectral Response vs. Linear Regression on Corrected
Latitude Data

2. Linear Regression for 1. Spectral Response vs. Latitude
Spectral Response vs. 2. Spectral Response vs. Time
Time (for each indi- (for each individual Test
vidual Test Site) Site)

3. Significance Testing 3. Significance Testing

Comparison and Analyses of

Corrected and Uncorrected Data

RESULTS

1. Importance of Correction Factors
2. Relationship Between Spectral Response

vs. Latitude
3. Relationship Between Spectral Response

vs. Time (for each individual Test Site)
4. Albedo Variations with Time Obtained

from Corrected Data
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To date, temporal comparisons have been made for 10 of the 14 test

sites with only one date analyzed for State College, Pennsylvania and

Orono, Maine. Texas (north) appears to have no useable data for the Brown

Wave and special orders had to be placed for West Virginia data as the

original incoming imagery did not include the test site. Table 1 shows

all data received and analyzed for each test site. A considerable number

of tapes have not yet been received.

TABLE 1

Analysis Summary
Breakdown According to Test Site

Appalachian Corridor

Orono, ME Richmond, ME Burlington, VT

1 Sept. 1972 15 Aug. 1972 21 Sept. 1972
1 Sept. 1972 10 Oct. 1972

27 Oct. 1972

Ithaca, NY State College, PA Raleigh, NC

19 Aug. 1972 6 Sept. 1972 19 Aug. 1972
5 Sept. 1972 6 Sept. 1972

23 Sept. 1972 24 Sept. 1972
11 Oct. 1972 12 Oct. 1972
9 Apr. 1973

Mississippi Corridor

Lansing, MI Lafayette, IN Southern Indiana

25 Aug. 1972 30 Sept. 1972 26 Aug. 1972
30 Sept. 1972 1 Oct. 1972 12 Sept. 1972

19 Oct. 1972 13 Sept. 1972
24 Nov. 1972 30 Sept. 1972
16 Jan. 1973 1 Oct. 1972
4 Feb. 1973 19 Oct. 1972
5 May 1973 5 Nov. 1972

6 Nov. 1972
16 Jan. 1973
4 Feb. 1973
5 May 1973

Jefferson City, MO Barnsdall, OK College Station, TX (central)

11 Aug. 1972 13 Aug. 1972 30 Aug. 1972
29 Aug. 1972 18 Sept. 1972 23 Oct. 1972

16 Mar. 1973
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Table 2 shows the 1972 and 1973 listing of data expected and received.

TABLE 2

Data Summary

1972 1973
Imagery Frames

Received: 127 Expected: 168 Received: 88 Expected: 230

Computer Compatible Tapes

Received: 45 Expected: 56 Received: 10 Expected: 40

Breakdown of Tapes Received

Reformatted Analyzed Useless

1972 1973 1972 1973 1972 1973

45 10 37 8 8 2-

The temporal analyses of the Brown Wave and Green Wave data are shown in

Figures 2-13. All analyses completed thus far is for forested areas only.

The fields chosen are outlined on the representative digital display image

with each graph. On the graph, the ordinate gives the mean relative spectral

response as determined from statistics obtained from a grouping of test fields

at each site. The abscissa shows the overpass day for each data element. All

four ERTS bands are shown separately on each graph.

In the case of the 10 test sites where time-lapse analysis of the data

could be made, bands 4 and 5 showed no significant change over time for the

Brown Wave. Notable exceptions to this observation include 24 September for

North Carolina .(Figure 7), and 12 and 13 September for Southern Indiana

(Figure 10) where the test site at the time of overpass was observed to be

under some haze which appears to have affected the data response. Both

Barnsdall, Oklahoma (Figure 12) and College Station, Texas (Figure 13) show

a slight decrease in response with no obvious explanation for the differences.

In bands 6 and 7, the near infrared region of response, there is a

8
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definite decrease in spectral properties as the Brown Wave progresses. The

only two exceptions are for band 6 at North Carolina (Figure 7) and for

band 7 at Oklahoma (Figure 12) where no significant pattern is detectable.

The reliability of the analysis of these data is enhanced in that the

fields chosen for each.test site are uniquely defined and consistent from

one overpass date analyzed to another.

In addition to temporal studies for each individual test site, a new

technique has been developed that permits the use of data from test sites

where only one good overpass occurred. This involves plotting, for a given

day, spectral response at a test site versus latitude of the sites for all

test locations. Thus, all data can be utilized for temporal studies.

Figures 14, 15 and 16 illustrate spectral response as a function of

latitude for three different days during the Brown Wave. Some interpolation

of data was necessary to accomplish this.

Regression analysis was then performed for the data on each of these

graphs. The Fischer t-test was employed to determine the probability of

the regression statistics being meaningful.

Table 3 shows the outcome of the regression analysis applied to three

different sets of data. The analyses look at the peak relative spectral

response versus latitude for 15 August 1972, 5 September 1972 and 10 October

1972, respectively.
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TABLE 3

Relative Spectral Response Versus Latitude

ERTS band r b a t

15 August 1972 4 .94 -.52 44.4 5.27
5 .90 -.76 45.6 3.23
6 .76 .86 *7.2 2.34
7 .78 .71 -3.6 2.49

5 September 1972 4 .67 -.41 40.4 2.02
5 .63 -.42 31.9 1.82
6 .54 .42 23.0 1.44
7 .53 .34 10.0 1.40

10 October 1972 4 .92 -.30 32.3 4.72
5 .66 -.18 21.0 1.76
6 .72 .25 19.6 2.09
7 .81 .26 7.7 2.76

The regression results may be summarized as follows:

Spectral Response Versus Latitude

a. Correlation coefficients seem to be somewhat higher

in bands 4 and 5.

b. Significance of the correlation coefficients is

easier to obtain in bands 4 and 5.

c. Regression slopes are consistently negative for

bands 4 and 5 and positive for bands 6 and 7.

d. The regression slopes tend to become consistently

"flatter" as the Brown Wave progresses. This

effect is observed in all four bands. Perhaps this

reflects the fact that differences in spectral

response with latitude are decreasing in that the

vegetative condition becomes more uniform over the

U.S. towards the end of the Brown Wave.
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A regression analysis was also performed on the Southern Indiana test

site for relative spectral response versus time of overpass (Figure 10).

The results are shown in Table 4.

TABLE 4

Relative Spectral Response Versus Date for Southern Indiana

ERTS band r b a

4 -.47 -2.3 106.6
5 -.20 -1.0 69.9
6 -.96 -2.48 137.5
7 -.95 -3.78 130.5

This was the only individual test site for which such an analysis could be

successfully conducted so far as no other site has more than four points

to plot. Later, as spring data are added to the present analysis for all

sites, a curvilinear regression may prove useful for each location.

Although it was not possible to compare the regression results from

Southern Indiana with other sites (due to lack of enough data so far), it

is possible to infer some information from Table 4.

1. Higher correlation coefficients are found in

bands 6 and 7 (in contrast to the findings for

Spectral Response versus Latitude).

2. The slopes are negative in all four channels.

This fact suggests the possibility that the

correction factor is important (in that a

decrease in actual albedo at all wavelengths is

unlikely for the vegetation being studied).
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Rocky Mountain and Columbia Valley Corridors

Imagery from 18 cycles of ERTS-1 have been received for almost all

10 test sites in the Rocky Mountain and Columbia River Valley Corridors.

Data were not received for Cycle 12, and Cycle 20 data are yet to arrive.

On hand are 216 sets of MSS images. Of these, 34 provided data resulting

in the ordering of magnetic tapes. Twenty-seven of these have been computer

processed to a finished Site Processing Report.

Three subsites have been identified within each of the 10 test sites.

These are (1) rangeland sites, (2) alfalfa fields, and (3) wheat fields. At

least one cycle of MSS data for each site has been computer-processed to

extract radiance values for each subsite. The task of accurately identifying

each of the three subsites is extremely tedious. Numerous maps, aerial

photographs, and positive transparencies of aerial photographs were required

to accomplish this task.

A standard format report is provided at the completion of site processing.

Data presented by this report is corrected for sun intensity variation due

to sun elevation at the time of the imagery (see section 2.1.2). Included in

the report is the site designator, which shows the corridor, site, and subsite

designation. For example, "CV7" designates site 7 in the Columbia Valley

Corridor. Subsites have been designated as "A" Alfalfa, "W" Wheat, and "R"

Range (Figures 17-19). Additional information in the report heading includes

the NASA image identifier 1304-17461, and the date of the satellite overpass

23MAY73. Other data includes the data cell and line extents of the site and

the total number of points in the full site. Subsite band means and covari-

ances are tabulated and a graph of the mean values is printed. Data points

are indicated by the symbol "*" and interconnecting plot lines by the symbol

"-". Also included is a printout of two calculated data parameters, the band

Band 7 - Band 5
ratio parameter defined as BRP =Band 7 + Band and the transformed vegetationBand 7 + Band 5

27



S* ERTS- * *

* SITE PROCESSING REPORT

* SIt ODLESIGNAITJR: Cv 7 A CELLS 2765 TO 2768 *
IMAGE [OENTIFIER: 1304-17461 LINES 1671 TO 1673 *
* ATE ACUUIRFO: 23MAY13 TOTAL POINTS 12 *

* *
** **CRRECTED FOR SUN ELEVATION " 56 DEGREES*** *

* RADIANCE(MWATTS/SQCM-STR-MICROMETER) *

MEAN STANDARD WAVELENGTH
DEVIATION (MICROMETERS) *

BAND 4 7.85 0.45 .5 - .6 *
fBAND 5 5.41 0.57 .6 - .7

(: IAND o 7.69 0.53 .7 - .8
BAND 7 7.23 0,.81 .8 -1.1

NORMALIZED COVARIANCES

BAND 4 BAND 5 BAND 6 BAND 7 *
* BAND 4 1.000 0.898 0.179 -0.011
* BAND 5 0.898 1.000 0.086 -0.142 *
* - BAND 6 0.179 0.086 1.000 0.901 *

*AND 7 -0.011 -0.142 0.901 1.000
* *
* BANr)D RATIO PARAMETER 0.143 *

TRANSFORMED PARAMETER 0.802
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8* 0
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0.0 +---- -+------------ -------- --------- *
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SPFPARFD BY:TEXAS ALM UNIVERSITY, REMOTE SENSING CENTER
DATA ANALYSIS LABORATORY 27SEP73 *

Figure 17. Site Processing Report for Havre, Montana,
subsite alfalfa 23 May 1973.
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* * ERTS-I * *

* SITE PROCESSING REPORT

* SITI DESIGNATIR: CV 1 W CELLS 2751 TO 2754 *
* IMAGE IDENT IF IER: 1304-17461 LINES 1674 TO 1681 *

DATP ACQUIRF): 23MAY73 TOTAL POINTS. 32 *

* ***COPPECTEI) FOR SUN ELEVATION 56 DEGREES*** *

RADIANCE(MWATTS/SQCM-STR-MICROMETER) *

MEAN STANDARD WAVELENGTH *
DEVIATION (MICROMETERS) *

BAND 4 9.16 0.43 .5 - .6
* IBAND 5 7.21 0.50 .6 - .7 *

BAND 6 7.72 0.34 .7 - .8 *
* AND 7 6.67 0.42 .8 -1.1 *

* NnRMALILED COVARIANCES *

* BAND 4 BAND 5 BAND 6 BAND 7 *
* BAND 4 1.000 0.684 0.350 -0.182 *

BAND 5 0.84 1.000 0.121 -0.380 *
* AND 6 0.350 0.121 1.000 0.508 *

* BAND 7 -0.182 -0.380 0.508 1.000 *

*AND RATIO PARAMETER -0.038
TRANSFORMED PARAMETER 0.679 *

* 16.0 +
* * *

* 0.5 0.6 0.7 0.8 0.9 1.0*

RADIANCE VS WAVELENGTH

PREPARFO RY:TEXAS A&M UNIVERSITY, REMOTE SENSING CENTER'
DATA ANALYSIS LAMORATORY 27SEP73

Figure 18. Site Processing Report for Havre, Montana,
subsite wheat 23 May 1973.
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*r* ERTS-1 * *

~p* * SITE PROCESSING REPORT *
* ************************* *

SITE DESIGNATOR: CV 7 R CELLS 2771 TO 2780 *
IMAGE IDENTIFIER: 1304-17461 LINES 1716 TO 1726 *
D* ATE ACQUIRED: 23MAY73 TOTAL PCINTS 110 *

* ***CIIRRECTFD FOR SUN ELEVATION 56 OEGRFES***

* KRADIANCE(MWATTS/SQCM-STR-MICROMETER) *

MEAN STANDARD WAVELENGTH *
* DEVIATION (MICROMETERS) *
* BAND 4 8.74 0.45 .5 - .6 *

BAND 5 6.64 0.49 .6 - .7
BAND 6 7.03 0.34 .7 - .B
*AND 7 5.91 0.37. .8 -1.1 *

* NOPMAL LEC COVAR ANCES *

SBAND 4 BAND 5 BAND 6 BAND 7
BAND 4 1.000 0.759 0.405 0.110 *
*AND 5 U.759 1.000 0.313 0.068
BAND 6 0.405 0.313 1.000 0.691

* BAND 1 0.110 0.068 0.691 1.000

BAND RATIO PARAMETER -0.058 *
TRANSFORMED PARAMETER 0.665 4

* 16.0 +

* . *

* 8.0 + -

* * 4

S0.0 +------------------- ------------------------------- +
* 0.5 0.6 0.7 0.8 0.9 1.0*

RADIANCE VS WAVELENGTH *

PRFPAREI) RY:TEXAS AGM UNIVERSITY, REMOTE SENSING CENTER *
DATA ANALYSIS LABORATORY 27SEP73 .

**********4****4************************************4**

Figure 19. Site Processing Report for Havre, Montana,
subsite range 23 May 1973.

30



parameter, TVP = (BRP + 0.5)1/2. These reports show the results of

integrating the reflectance values from scenes which were located by use

of a Band 5 gray map (Figure 20). The gray map coordinates were provided

by Montana State University, and are verified by them upon receipt of the

site reports. Phenological progressions can be detected using Bands 5

and 7. The data available from Rocky Mountain and Columbia Valley corridors

show evidence that vegetation conditions strongly effect radiance values.

This is especially true of the measurements of alfalfa fields. In addition,

the BRP appears to provide a responsive indicator of greenness. This is

illustrated in the seven cycles of data available for the Havre, Montana

Site. The data values are listed in Table 5. These data are plotted in

Figure 21 for each subsite. An option in the programming has also been

included to allow mean and covariance calculations to be made and printed

for 4 mile square sites including all subsites in essentially the same

format as the full subsite report. This provides an integrated measure of

the composite vegetation development.
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Figure 20. Band 5 gray map for Havre, Montana, 23 May 1973.
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Table 5

Mean Radiance and Band Ratio Parameters

Havre, Montana Band Mean Radiance (mw/cm2-STR-nm)

Date Band 4 Band 5 Band 6 Band 7 BRP

Alfalfa subsite

26 Aug. 72 8.91 5.91 8.45 7.93 .146
13 Sept. 72 7.16 4.86 6.79 6.49 .143
12 Mar. 73 8.45 6.69 5.93 5.52 -.096

30 Mar. 73 9.11 7.17 6.54 6.12 -.079

5 May 73 8.53 6.38 6.60 5.93 -.036

23 May 73 7.85 5.41 7.69 7.23 .143
10 June 73 7.10 4.60 8.36 8.62 .304

Wheat subsite

26 Aug. 72 10.09 7.90 7.81 6.48 -.099
13 Sept. 72 8.71 6.45 6.45 5.69 -.062
12 Mar. 73 9.24 7.12 6.29 5.55 -.124

30 Mar. 73 9.14 7.34 6.46 5.63 -.131

5 May 73 9.65 7.65 7.60 6.44 -.086
23 May 73 9.16 7.21. 7.72 6.67 -.038
10 June 73 8.61 6.45 7.87 7.28 .060

Range subsite

26 Aug. 72 9.01 6.64 6.34 5.31 -.111

13 Sept. 72 8.13 5.74 5.69 4.83 -.086
12 Mar. 73 8.79 6.57 5.56 4.82 -.154

30 Mar. 73 8.92 6.76 5.72 4.95 -.154
5 May 73 9.98 8.01 7.35 6.06 -.138

23 May 73 8.74 6.64 7.03 5.91 -.058
10 June 73 8.12 5.96 7.15 6.62 -.052

4x 4 area

26 Aug. 72
13 Sept. 72 -- -- - -

12 Mar. 73 9.15 7.12 6.21 5.42 -.136
30 Mar. 73 9.34 7.43 6.55 5.70 -.132

5 May 73 10.30 8.33 7.68 6.42 -.129

23 May 73 8.99 7.10 7.61 6.51 -.044
10 June 73 8.46 6.55 7.88 7.36 .059
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Figure 21. ERTS-1 Radiance Readings Havre, Montana.
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2.1.2 Radiation and Atmospheric Correction Factors

The problem of changing atmospheric and illumination conditions has

been recognized since the beginning of the ERTS project. These changing

conditions generally affect the absolute variations of the spectral

signatures recorded from different times and locations, and will in

general have some unspecified effect on the results derived from these

signatures. It is, therefore, necessary to correct the data for variations

in solar elevation and atmospheric transmissivity before a meaningful

comparison can be made.

Research on this problem is being conducted both by LARS, Purdue

University and RSC, Texas A & M University. At LARS a simple geometrical

model utilizing satellite and ground radiation data has been developed.

The model permits the comparison of the albedo of a canopy at two different

points in time. Using the peak values of spectral response sensed by the

satellite, these data were corrected for the aforementioned factors using

the solar elevation at the time of overpass as listed on the ERTS imagery

frames as well as the direct beam solar radiation received at the earth's

surface from the weather station nearest the test site.

In the cases of Orono, Maine; Barnsdall, Oklahoma; and Commerce,

Texas the necessary instrumentation was not available within a 30-mile radius

of the site. In these cases, no correction factors could be applied to

the data. For Southern Indiana, it will be necessary to interpolate the

approximate radiation value at the test site from several locations about

the state.

Figure 22 illustrates a monochromatic direct beam of radiation, Io,

striking a plane at the top of the atmosphere which is parallel to the

terrain immediately below. Io is given by equation (1) (Appendix A), Z

being the zenith angle of the sun (900 -A) and So being the solar constant
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A - Solar Elevation Angle It= Intensity at Canopy Top

Z = 90-A Zenith Angle of Sun
Is= Monochromatic Intensity

IO So cos Z Measured by Satellite

tT Solar Constant r = Transmissivity for I -Ic Path

Tra Transmissivity for Ic-I s Path

a ; Albedo Canopy

Figure 22. Factors Affecting Satellite Sensed Data.
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for a particular monochromatic beam. Beer's Law allows the calculation

of the surface, Ic. This is shown by equation (2).

Equation (2) can be rewritten in the form of equation (4) by substi-

tuting for the negative exponential through equation (3). If a is the

canopy's albedo, equation (5) indicates the direct beam monochromatic

radiation returning to the satellite (assuming the satellite is directly

overhead). Equation (5) may again be rewritten in the form of equation (7)

by substituting for the negative exponential through (6). The two trans-

missivity factors, T and T2 are related through (8) and (9) if the

monochromatic extinction coefficients for the paths Io Ic and Icl s' are

assumed equal. Thus (11) results from (7) by using (2), (4), and (9). If

T is used to represent a "combined" monochromatic atmospheric transmissivity

(12) factor (11) is simplified to (13).

Equation (13) can be considered for two different months, i and j, and

with the appropriate superscripting, (14a) and (14b) result. Taking the

ratio of (14a) to (14b) results in (15) and this may be solved in turn for
i
a , which is (16). Equation (16) shows that the ratio of the albedos of a

aJ

canopy at two different times is given by the product of A*B*C where:

i
s ratio of direct beam intensities at

A-
lj satellite at times i and j
s

B Y ratio of "combined" transmissivityB - +
i at times j and i

cos Z ratio of cosines of zenith angle atC =  +
cosiZ times j and i

A and C can be obtained from the ERTS data, but what about the combined

transmissivity term B? The transmissivity T1 can also be expressed as the

ratio of the actual monochromatic direct beam intensity striking the surface,

Ic, and the monochromatic intensity that would strike the surface in the
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absence of an atmosphere, Io . This is expected in (17). Using (17), (12)

may be rewritten for times i and j to obtain (18a) and (18b). The ratio

of (18a) and (18b) results in (19), and (19) substituted into (16) results

in the final equation (20)

Sj cos Z
c

I

a s ci o

a3 I 3L i 1  ii cos Z

I

This equation permits a direct comparison of the albedo of a canopy

at two different times. Since it is a ratio comparison, Is and Ic need

not have the same units.

Caution must be exercised in the application of equation (20) due to

its monochromatic nature. For example, when the solar constant is used in

the equation, it does not have the value of 2 ly min- i but rather the sum

of the direct beam energy in the waveband interval being considered.

ly min.-1
Band 4 .5 - .6  + Sol .277

5 .6-.7p - So2 .236

6 .7-. 8-p So3 - .193

7 .8-1.1i So4 + .370

Figure 23 illustrates the results of corrections applied to some ERTS

data for Lafayette, Indiana for three different ratio comparisons. The ratio

of the data li / I, the ratio after correcting with direct beam radiation

measured at the surface, and the ratio after correcting using total solar

radiation (not strictly justified since total solar measurements are flux

measurements) are all portrayed for the 4 ERTS bands. The following conclu-

sions can be drawn:
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Figure 23. Ratio Graphs of Applied Correction Factors Compared
to Uncorrected Data for Lafayette, Indiana.
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a. The longer the time between observations, the more

important the correction factor becomes.

b. In the visible bands, 4 and 5, where the initial

analysis showed no systematic change, thecorrected

values indicate a definite increase in response as

senescence occurs.

c. While there is a significant shift in the infrared

bands, 6 and 7, after applying corrections, they

are not sufficient to reverse the direction of the

change in response. The near infrared still shows

a decrease in reflectance as the Brown Wave progresses.

d. Similar results are obtained whether direct or total

solar radiation is used in the equation.

These results are consistent with what would be expected during

vegetative maturation--an increase in response in the visual bands while

the infrared shows a decrease. They show that bands 6 and 7 are still

meaningful for analysis thus far in their unaltered form. When bands 4

and 5 are corrected for outside factors influencing the plant's satellite

sensed response, the pattern of changes in spectral properties is enhanced.

At RSC, Texas A&M University, a data analysis project is underway to

determine the amount of variation introduced as a result of changes in

atmospheric and illumination conditions. This project also investigates

methods and models which will be useful in reducing these effects upon

the results of the phenology study.

Analyses are being conducted to gain experience with the satellite

data to correlate with observed albedo changes. Initial studies were

conducted by examination of between-band probability density functions of

the sensor data values from multitemporal and multiple site sources. A
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scene (32 km x 32 km) was selected for the College Station area for three

dates in 1972 (30 August, October 23, and December 16). Two-dimensional

frequency counts were made of two-band data value pairs for each date. A

frequency threshold was selected (700 points) and all data pairs having a

higher rate than this threshold were plotted on a two-dimensional cluster

plot (Fig. 24). In examining the aggregate of superimposed clusters from

multiple dates, two characteristics are noted. Changes in scene charac-

teristic signatures apparent in the shape of the clusters are noted,

especially between the October and the December data. This relationship

between the August and October data sets is relatively consistant at the

level of significance of the display.. However, the dominant trend apparent

in the data is a general decrease in scene data values over time. This

result immediately suggests scene illumination variations (as might be

expected), and emphasizes the magnitude of their effect, which dominates

the data relationships.

Sun angle corrections were implemented using a simple mathematical

relationship of the intensity of solar radiation, IH, falling upon a

horizontal plane as a function of the solar constant Io, and the solar

elevation y. This relationship (IH = Iosiny) was used to apply corrections

to satellite data for variations due to the changes in source illumination

intensity as a function of solar elevation angles. These illumination

corrections appear to be reasonably successful in removing bias from the

data sets apparent as a function of time.

In parallel with these solar illumination studies, an activity was

initiated to obtain multitemporal, spectral signatures from terrain areas

generally expected to vary the least, such as urban areas and cultural

features. A test site from the non-industrial, downtown area of Bryan,

Texas was selected for initial study. Multitemporal spectral signatures
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Figure 24. Two-dimensional cluster plot for Bands 6 radiance,
College Station, Texas.
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were computed for the three dates which were available. In Figure 25 is

shown the relationship between these signatures. The temporal variation

is readily apparent. Applying the sun angle corrections described above,

the data fall into alignment. In fact, the sun angle correction puts all

of the signatures within one sample standard deviation.

Atmospheric studies are continuing to determine the extent of atmos-

pheric attenuation and spectral dispersion through the identification of

atmospheric models and by comparison of data from ground targets of

relatively consistent spectral signatures over time. It appears that

vegetative scene inhomogenieties are the major contributor to data variance,

and that variance produced as a result of atmospheric variation in non-

industrial regions from some nominal value is small in comparison. Direct

application of ERTS data to the problems addressed in this study is not

dependent upon precise atmospheric correction, and it appears from the

data considered that sun angle correction will provide adequate reduction

of multitemporal data variance.

Corrections to ERTS data for the Eastern Corridors are found necessary

due to variations of water vapor and particulate matter in the atmosphere.

In the clearer atmosphere over the Western Corridors, correction for sun

angle change is the only correction necessary.
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Figure 25. Multitemporal spectral signatures, Bryan, Texas.
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2.1.3 Photo Interpretation

Data handling has included the determination of the quality,

cataloging, and filing of MSS imagery (Appendix B) and ground observation

photography as it arrived. Color composites (bands 4, 5, and 7) were

ordered for all imagery of good quality and covering the project sites.

Image interpretation methods were successfully used to map fall-

related phenological events at two sites. Forest and crop changes at the

southern Indiana and Vermont study areas were documented from the ground

observation photography and tonal changes on the MSS imagery (1, 2, 3).

Work was also initiated to evaluate the relationship between pheno-

logical events and image (film) density changes. A Welsh Scientific

density analyzer has been used to make some initial test measurements.

The results indicate that for the scale imagery and site area in this

project, the instrument will provide better measurements with a smaller

aperture. This modification is now being made.

The preliminary density analysis of Lafayette, Indiana and Vermont

imagery has given results consistent with those found in the image inter-

pretation study.- Phenological changes have been correlated with density

differences within each band and with changes in band to band ratios.

The form of this ratio involving bands 5 and 7 was suggested, Texas A&M

University, and is expressed as:

R Density Band 5 - Density Band 7
5-7 Density Band 5 + Density Band 7

This ratio continuously decreased with the progression of fall pheno-

logical changes in field crops and forests.
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2.1.4 Color Reconstitution Techniques

As an aid to analyzing the data and for a better visual representation

of the area under study, a photographic technique developed by the

Laboratory for Applications of Remote Sensing (LARS) at Purdue University

was.employed for at least one good set of data for each site to produce

color images similar to color infrared photographs. The process, referred

to as color enhancement, uses a sequence of color filters for simultaneous

exposures utilizing bands 4, 5, and 6 of the ERTS data. The color images

show the forested areas very distinctly and in many cases make it easier

to locate such regions. The technique was also quite useful in locating

wheat fields in the winter data since wheat and grass are about the only

areas expected to be green (showing up bright red on the false color images)

at this time of year.
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2.2 Ground Observations

2.2.1 Corridor Sites

Ground photography documenting phenological events, was continued at

the 24 established sites in the four corridors (see Figure 1).

The advance of the Green Wave (foliage development) with time at

Orono, Maine is illustrated in Figure 26.

Ground photographs at all observation sites in the Rocky Mountain and

Columbia Valley corridors have been classified as to the percent of the

view which is covered with living green vegetation. This provides informa-

tion on the beginning, development, recession and ending of the Green and

Brown Waves.

In addition, considerable information on visual observations of the

Green Wave on irrigated and non-irrigated acreages throughout the West have

been obtained.

Hundreds of cooperators in the Western Phenological Network recorded

the dates when vegetated land (devoid of trees) changed from predominant

non-green, usually yellowish or brownish, to predominant green. These data

are now being related to phenophases of purple common lilac and honeysuckle.

A preliminary study conducted in the spring of 1972 indicated that the

"Green Wave" and "95% leaf phase" of purple common lilac occur on about the

same date. Observations were also recorded for the first time throughout

the West on the dates of the Brown Wave (the change from predominant green

to non-green).

ERTS-1 imagery also shows the initiation of the drought-caused Brown

Wave. As the natural vegetation begins to dry, the circular irrigated

fields remain green. The resulting difference in radiance can be correlated

to the onset of the dry period.
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Figure 26. Green Wave (foliage development with time) at Orono, Maine.
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2.2.2 Phenological Networks

Phenological observations contributed to this project by the State

Agricultural Experiment Stations are obtained from two large networks

(Figures 27 and 28). The more than 3200 sites constitute the observa-

tional base of regional phenological research carried out by W-48 and

NE-69.

"Red Rothomagensis" lilac is used as an indicator plant in the Central

and Eastern United States and purple common lilac and two honeysuckle

cultivars in the West.

Figures 29 and 30 are preliminary maps of the Brown Wave (fall 1972)

for the common purple lilac and Zabeli Honeysuckle,respectively. Isolines

on the maps are for the dates by which 95% of the leaves have lost their

green color.

Observations on two "Red Rothomagensis" lilac phenophases in spring

1973, first leaf and first flowers, were selected to document the "Creen

Wave". Isophanes for these phenophases, the lines on the maps connecting

locations where phenological events occur simultaneously are shown in

Figures 31 and 32. A more detailed map of the first leaf isophanes in the

Northeast is shown in Figure 33. The maps are based on data supplied by 207

observers in the eastern section of the NE-69 study area and 66 observers

in the western section. The dividing line of the two sections follows the

western borders of Pennsylvania and West Virginia.

The spring progression of the common purple lilac in the Western United

States for the spring of 1973 is shown in Figure 34.

The spring progression of first leaf of "Red Rothomagensis" lilac in

1973 was characterized by initial earliness followed by considerable delays

in certain areas. First flowers followed a more normal pattern of development.

The overall departure from the average is also demonstrated by multiple
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regression equations. Latitude, longitude and elevation of the observation

sites were used to estimate the dates of first leaf and first flowers. In

Table 6 the regression equations for 1973 are compared with the equations

for average dates (4). While normally the northerly advance of first leaf

in the east is at the rate of about four days for each degree of latitude,

the rate in 1973 was over six days. Thus, the two to three week earliness

in the southern part of the corridor was reduced to about one week in the

north.

Time lapse photographs document the development of a "Red Rothomagensis"

indicator plant. The pictures (Figure 35) were taken at the NE-69 phenological

site near Richmond, Vermont, between 19 April and 6 July. The rapid develop-

mental changes that occurred during the interval between two successive ERTS-1

overpasses are obvious from the photographs, particularly during the end of

May and early June. The dates of the overpasses at this time were 14 May,

1 June, and 19 June.

Computer programs have been written for calculating daily and cumulative

growing degree days (GDD) using base temperatures of 30, 32, 36, 40, 45, and

50 degrees F. Programs are likewise being prepared for the Weather Bureau

50-86 and 40-86 and the Newman-Purdue and Brown-Ontario methods as described

by Lytle (5).

The 1973 minimum and maximum temperature data from those locations in

New England, New York, and New Jersey where lilac phenology data are available

this year are presently being punched on cards in preparation for the develop-

ment of phenoclimatic models.
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Table 6. Multiple Regression Equations for Predicting 1973 Date and Average Date of First
Leaf and First Flowers on 'Red Rothomagensis' Lilac in the NE-69 Study Area

Stand. error
n R2  of estimate

First Leaf
West

1973 Y = -196.3 + 4.46 lat. + 0.41 long. + 0.0088 elev. (m) 66 0.73 10.1 (1)
*Avg Y = - 99.8 + 4.56 lat. - 0.61 long. + 0.0133 elev. (m) 45 0.91 5.0 (2)

East

1973 Y = -125.9 + 6.14 lat. - 1.37 long. + 0.0272 elev. (m) 207 0.77 9.3 (3)

*Avg Y = + 1.9 + 4.15 lat. - 1.79 long. + 0.0300 elev. (m) 129 0.84 4.9 (4)

First Flowers
West

1973 Y = - 57.7 + 4.72 lat. - 0.88 long. + 0.0276 elev. (m) 40 0.89 6.3 (5)

*Avg Y = - 50.9 + 4.51 lat. - 0.80 long. + 0.0138 elev. (m) 45 0.96 3.3 (6)

East

1973 Y = - 51.0 + 4.97 lat. - 1.22 long. + 0.0342 elev. (m) 137 0.85 5.4 (7)

*Avg Y = - 15.0 + 4.30 lat. - 1.21 long. + 0.0178 elev. (m) 106 0.85 3.9 (8)

Y = coded date of phenological event where March 1 = 1, etc.

* Equations (2), (4), (6), and (8) from Hopp and Blair (1973).
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Figure 35. Green Wave (lilac development with time) at Burlington,
Vermont, 1973.
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3.0 FUTURE WORK

Study of the 1973 Green Wave will be completed; and, if data are

received in time, the study of the 1973 Brown Wave will also be completed.

If time and data permit, the 1973 Brown Wave will be compared with the

1972 Brown Wave. Such a study would give the first definitive information

on annual variation of this phenological event.

3.1 Ground Observations

Computer mapping of the 1973 Green Wave and the 1973 Brown Wave will

be completed. Data input for these maps will come from the phenological

networks shown in Figures 27 and 28.

3.2 Solar Thermal Units

Comparison of the solar thermal unit (6) accumulations during the 1973

growing season with phenological development and satellite information will

be completed.

3.3 Data Processing

Upon receipt of the other spring tapes, the study of the 1973 Green

Wave will be completed. Analysis of the 1973 Brown Wave will be initiated

upon receipt of the imagery and tapes. It is hoped that all the required

data can be obtained before the November 11 cutoff date.

A standard method of correcting for changing atmospheric and illumina-

tion conditions will be decided upon. Comprehensive computer printed

reports will be obtained for all 24 sites.

These reports will summarize the calculated data and present it graph-

ically with both time and latitude on the abscissa.
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3.4 Photo Interpretation

Ground observation photography documenting the 1973 Green and Brown

Waves will be completed. Density sliced and color enhanced imagery will

be obtained to qualify the phenological changes.

A densitometry study will be continued quantifying the phenological

changes as recorded on the MSS imagery. Recently developed regression

corrections for instrument calibration and gray scale standardization along

with a sun elevation-atmospheric correction ratio will be applied to the

densities so that the results will reflect actual changes in the albedo of

forest canopy. The corrected densities will be used to calculate band to

band ratios using the previously discussed formula. These ratios will be

correlated in a time-lapse format with the observed phenological changes.

Aircraft underflight imagery will be used to verify alternate site

selections. These alternate forest areas will be chosen to provide larger

sample sizes and more cloud-free coverage at each of the sites. The air-

craft imagery will also be used to see that the alternate forest areas are

comparable to the area where the ground truth photography is taken.

3.5 Phenoclimatic Models

Growing degree days accumulated when using the different formulas

will be compared with dates of phenological development of the lilac to

determine which can be used to give the best prediction of the event.

After these data have been completely analyzed, they will be compared

with the progress of the Green Wave as revealed by the ERTS-1 imagery,

although it will be difficult to make some of these comparisons because,

on many of the passes of the satellite, clouds obscured much of the

Northeastern United States.

Some of the daily temperature data will not be obtained from the
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National Weather Records Center at Asheville, North Carolina, until

October, so it will be impossible to complete the calculations for the

more northern locations until that time.

Phenoclimatic models will be developed and preliminary world maps

(7) drawn for the following events:

1. the Green Wave,

2. begiii bloom of lilac,

3. yearly total evapotranspiration,

4. number of alfalfa cuttings per year, and

5. the Brown Wave.

3.6 Final Report

The most concentrated effort will occur during the final phase of

the project and will be directed toward the writing of the final report.

Data presented in the final report will be in the form of photographs

as well as statistics.

Time-lapse photos will be produced showing temporal and geographic

changes. The products to be presented in this form will be:

a. spectral curves

b. imagery in the suitable band or bands,

c. density sliced representations of changes in

vegetation on ground observation photos.

The statistical results will be presented in the form of tables and

graphs and will include:

a. mean and standard deviation and covariance matrix

of reflectance,

b. comparative spectral response,
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c. change in forest canopy and plant cover, and

d. relationship between weather parameters and

phenological events.

Maps. will be prepared of the following:

a. Green Wave,

b. Brown Wave, and

c. other seasonal phenological events.

The mathematical relationships between temporal vegetation changes

and atmospheric parameters will be expressed in phenoclimatic models.
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4.0 Conclusions

The program of work outlined in the Type II Progress Report (August 1972 -

February 1973) has continued at a pace determined by the rate of receipt of

ERTS-1 data.

Preliminary regression analysis results for relative spectral response

versus latitude show:

a) Correlation coefficients seem to be somewhat higher

in bands 4 and 5.

b) Significance of the correlation coefficients is

easier to obtain in bands 4 and 5.

c) Regression slopes are consistently negative for

bands 4 and 5 and positive for bands 6 and 7.

d) The regression slopes tend to become consistently

"flatter" as the Brown Wave progresses. This

effect is observed in all four bands. Perhaps this

reflects the fact that differences in spectral

response with latitude are decreasing in that the

vegetative condition becomes more uniform over the

U.S. towards the end of the Brown Wave.

Regression analysis for a site with eight data points indicates:

a) Higher correlation coefficients are found in bands

6 and 7 (in contrast to the findings for spectral

response versus latitude).

b) The slopes are negative in all four channels. This

fact suggests the possibility that the correction

factor is important (in that a decrease in actual

albedo at all wavelengths is unlikely for the

vegetation being studied).
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The data available from Rocky Mountain and Columbia Valley corridors

show evidence that vegetation conditions strongly effect radiance values.

This is especially true of the measurements of alfalfa fields. In addition,

the BRP appears to provide a responsive indicator of greenness. It appears

that vegetative scene inhomogenieties are the major contributor to data

variance, and that variance produced as a result of atmospheric variation

in nonindustrial regions from some nominal value is small in comparison.

Direct application of ERTS data to the problems addressed in this study is

not dependent upon precise atmospheric correction, and it appears from the

data considered that sun angle correction will provide adequate reduction

of multitemporal data variance.

Corrections to ERTS data for the Eastern Corridors are found necessary

due to variations of water vapor and particulate matter in the atmosphere.

In the clearer atmosphere over the Western Corridors, correction for sun

angle change is the only correction necessary.

The preliminary density analysis of Lafayette, Indiana and Vermont

imagery has given results consistent with those found in the image inter-

pretation study. Phenological changes have been correlated with density

differences within each band and with the BRP.

This ratio continuously decreased with the progression of fall pheno-

logical changes in field crops and forests.

A preliminary study conducted in the spring of 1972 indicated that the

"Green Wave" and "95% leaf phase" of purple common lilac occur on about the

same date. Observations were also recorded for the first time throughout

the West on the dates of the Brown Wave (the change from predominant green

to non-green).

ERTS-1 imagery also shows the initiation of the drought-caused Brown

Wave. As the natural vegetation begins to dry, the circular irrigated
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fields remain green. The resulting difference in radiance can be correlated

to the onset of the dry period.

Observations from the phenological networks of the phenophases selected

to document the Green Wave showed the following:

a) The spring progression of first leaf of "Red

Rothomagensis" lilac in 1973 was characterized by

initial earliness followed by considerable delays

in certain areas.

b) First flowers followed a more normal pattern of

development.

c) While normally the northerly advance of first leaf

in the east is at the rate of about four days for

each degree of latitude, the rate in 1973 was over

six days. Thus, the two to three week earliness in

the southern part of the corridor was reduced to

about one week in the north.

The findings of the second six months of research reinforces our

previous conclusions concerning the benefits to be derived from an opera-

tional ERTS system.

"Satellite data, such as that received from ERTS-1, will make worldwide

phenological monitoring possible. This is necessary to develop universally

applicable phenoclimatic models.

For countries with highly developed agriculture, such information would

be useful in characterization of crop status and an aid to yield prediction

and management planning. Phenological data in less-developed countries

could be useful for agricultural land use planning and for determining site

suitability.

In the final analysis, the success of Earth Resources Technology
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Satellites will depend on the ultimate use of interpreted data. In the

agricultural, forestry, and related segments of the economy these data will

contribute to decision making of economic significance in management,

provide more accutate estimates of acreage and yield forecasts of many

commodities. The means of disseminating the interpreted date to the user

is available through Cooperative State Extension Service. Working with the

Scientists from the State Agricultural Experiment Stations, extension

specialists could be trained to incorporate satellite derived information

into their state advisory programs."
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